|   | 3.2.3 | 
| Data Structures | |
| struct | nfsft_wisdom | 
| Wisdom structure.  More... | |
| Macros | |
| #define | BWEXP_MAX 10 | 
| #define | BW_MAX 1024 | 
| #define | ROW(k) (k*(wisdom.N_MAX+2)) | 
| #define | ROWK(k) (k*(wisdom.N_MAX+2)+k) | 
| #define | NFSFT_DEFAULT_NFFT_CUTOFF 6 | 
| The default NFFT cutoff parameter. | |
| #define | NFSFT_DEFAULT_THRESHOLD 1000 | 
| The default threshold for the FPT. | |
| #define | NFSFT_BREAK_EVEN 5 | 
| The break-even bandwidth  . | |
| Enumerations | |
| enum | bool { false = 0, true = 1 } | 
| Functions | |
| void | alpha_al_row (R *alpha, const int N, const int n) | 
| void | beta_al_row (R *beta, const int N, const int n) | 
| void | gamma_al_row (R *gamma, const int N, const int n) | 
| void | alpha_al_all (R *alpha, const int N) | 
| Compute three-term-recurrence coefficients  of associated Legendre functions for  . | |
| void | beta_al_all (R *beta, const int N) | 
| Compute three-term-recurrence coefficients  of associated Legendre functions for  . | |
| void | gamma_al_all (R *gamma, const int N) | 
| Compute three-term-recurrence coefficients  of associated Legendre functions for  . | |
| void | eval_al (R *x, R *y, const int size, const int k, R *alpha, R *beta, R *gamma) | 
| Evaluates an associated Legendre polynomials  using the Clenshaw-algorithm. | |
| int | eval_al_thresh (R *x, R *y, const int size, const int k, R *alpha, R *beta, R *gamma, R threshold) | 
| Evaluates an associated Legendre polynomials  using the Clenshaw-algorithm if it no exceeds a given threshold. | |
| static void | c2e (nfsft_plan *plan) | 
| Converts coefficients  with  ,  from a linear combination of Chebyshev polynomials 
  to coefficients  
 | |
| static void | c2e_transposed (nfsft_plan *plan) | 
| Transposed version of the function c2e. | |
| void | nfsft_init (nfsft_plan *plan, int N, int M) | 
| void | nfsft_init_advanced (nfsft_plan *plan, int N, int M, unsigned int flags) | 
| void | nfsft_init_guru (nfsft_plan *plan, int N, int M, unsigned int flags, unsigned int nfft_flags, int nfft_cutoff) | 
| void | nfsft_precompute (int N, double kappa, unsigned int nfsft_flags, unsigned int fpt_flags) | 
| void | nfsft_forget (void) | 
| void | nfsft_finalize (nfsft_plan *plan) | 
| void | nfsft_trafo_direct (nfsft_plan *plan) | 
| void | nfsft_adjoint_direct (nfsft_plan *plan) | 
| void | nfsft_trafo (nfsft_plan *plan) | 
| void | nfsft_adjoint (nfsft_plan *plan) | 
| void | nfsft_precompute_x (nfsft_plan *plan) | 
| Variables | |
| static struct nfsft_wisdom | wisdom = {false,0U,-1,-1,0,0,0,0,0} | 
| The global wisdom structure for precomputed data. | |
| #define NFSFT_DEFAULT_NFFT_CUTOFF 6 | 
| #define NFSFT_DEFAULT_THRESHOLD 1000 | 
| 
 | inline | 
Compute three-term-recurrence coefficients  of associated Legendre functions for
 of associated Legendre functions for  .
. 
 where the coefficients will be stored such that alpha[n+(N+1)+k] =
 where the coefficients will be stored such that alpha[n+(N+1)+k] =  .
.  .
. Definition at line 91 of file legendre.c.
| 
 | inline | 
Compute three-term-recurrence coefficients  of associated Legendre functions for
 of associated Legendre functions for  .
. 
 where the coefficients will be stored such that beta[n+(N+1)+k] =
 where the coefficients will be stored such that beta[n+(N+1)+k] =  .
.  .
. Definition at line 100 of file legendre.c.
| 
 | inline | 
Compute three-term-recurrence coefficients  of associated Legendre functions for
 of associated Legendre functions for  .
. 
 where the coefficients will be stored such that gamma[n+(N+1)+k] =
 where the coefficients will be stored such that gamma[n+(N+1)+k] =  .
.  .
. Definition at line 109 of file legendre.c.
| void eval_al | ( | R * | x, | 
| R * | y, | ||
| const int | size, | ||
| const int | k, | ||
| R * | alpha, | ||
| R * | beta, | ||
| R * | gamma | ||
| ) | 
Evaluates an associated Legendre polynomials  using the Clenshaw-algorithm.
 using the Clenshaw-algorithm. 
 
  
  
  
 Definition at line 118 of file legendre.c.
| int eval_al_thresh | ( | R * | x, | 
| R * | y, | ||
| const int | size, | ||
| const int | k, | ||
| R * | alpha, | ||
| R * | beta, | ||
| R * | gamma, | ||
| R | threshold | ||
| ) | 
Evaluates an associated Legendre polynomials  using the Clenshaw-algorithm if it no exceeds a given threshold.
 using the Clenshaw-algorithm if it no exceeds a given threshold. 
 
  
  
  
 Definition at line 163 of file legendre.c.
| 
 | inlinestatic | 
Converts coefficients  with
 with  ,
,  from a linear combination of Chebyshev polynomials
 from a linear combination of Chebyshev polynomials 
![\[ f(\cos\vartheta) = \sum_{k=0}^{2\lfloor\frac{M}{2}\rfloor} a_k (\sin\vartheta)^{n\;\mathrm{mod}\;2} T_k(\cos\vartheta) \]](form_52.png) 
 to coefficients  matching the representation by complex exponentials
 matching the representation by complex exponentials 
![\[ f(\cos\vartheta) = \sum_{k=-M}^{M} c_k \mathrm{e}^{\mathrm{i}k\vartheta} \]](form_54.png) 
 for each order  .
. 
nfsft_plan containing the coefficients 
Definition at line 111 of file nfsft.c.
References nfsft_plan::f_hat_intern, and nfsft_plan::N.
| 
 | inlinestatic | 
Transposed version of the function c2e.
nfsft_plan containing the coefficients 
Definition at line 189 of file nfsft.c.
References nfsft_plan::f_hat, and nfsft_plan::N.
| 
 | static |